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Coastal wetlands of the Southeastern United States host a high abundance and

diversity of critical species and provide essential ecosystem services. A rise in

threats to these vulnerable habitats has led to an increased focus on research

and monitoring in these areas, which is traditionally performed using manual

measurements of vegetative characteristics. As these methods require

substantial time and effort, they are often limited in scale and infeasible in

areas of dense or impassable habitat. Unoccupied Aircraft Systems (UAS)

provide an advantage over traditional ground-based methods by serving as a

non-invasive alternative that expands the scale at which we can understand

these ecosystems. While recent interest in UAS-based monitoring of coastal

wetland habitats has grown, methods and parameters for UAS-based mapping

lack standardization. This study addresses variability introduced by common

UAS study techniques and forms recommendations for optimal survey designs

in vegetated coastal habitats. Applying these parameters, we assess alignment

of computed estimations withmanually collectedmeasurements by comparing

UAS-SfM mapping products to ground-based data. This study demonstrates

that, with careful consideration in study design and analysis, there exists great

potential for UAS to provide accurate, large-scale estimates of common

vegetative characteristics in coastal salt marshes.
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1 Introduction

Estuarine intertidal habitats are rich in both species diversity and abundance

(Noss et al., 2015). Tidal wetlands are used as foraging grounds, nursery habitat, and

reproductive space for commercially and recreationally important fishery stocks

(Barbier et al., 2011). Beyond providing critical habitat for fauna, vegetated

OPEN ACCESS

EDITED BY

Jane Southworth,
University of Florida, United States

REVIEWED BY

Christine Angelini,
University of Florida, United States
Dongdong Shao,
Beijing Normal University, China

*CORRESPONDENCE

Alexandra E. DiGiacomo,
alexandra.digiacomo@stanford.edu

SPECIALTY SECTION

This article was submitted to
Unoccupied Aerial Systems (UASs and
UAVs),
a section of the journal
Frontiers in Remote Sensing

RECEIVED 21 April 2022
ACCEPTED 21 July 2022
PUBLISHED 24 August 2022

CITATION

DiGiacomo AE, Giannelli R, Puckett B,
Smith E, Ridge JT and Davis J (2022),
Considerations and tradeoffs of UAS-
based coastal wetland monitoring in the
Southeastern United States.
Front. Remote Sens. 3:924969.
doi: 10.3389/frsen.2022.924969

COPYRIGHT

© 2022 DiGiacomo, Giannelli, Puckett,
Smith, Ridge and Davis. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Remote Sensing frontiersin.org01

TYPE Original Research
PUBLISHED 24 August 2022
DOI 10.3389/frsen.2022.924969

https://www.frontiersin.org/articles/10.3389/frsen.2022.924969/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.924969/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.924969/full
https://www.frontiersin.org/articles/10.3389/frsen.2022.924969/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2022.924969&domain=pdf&date_stamp=2022-08-24
mailto:alexandra.digiacomo@stanford.edu
https://doi.org/10.3389/frsen.2022.924969
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2022.924969


wetlands enhance coastal water quality by trapping sediments

and filtering nutrients, are valued for their ability to sequester

carbon, and can protect coastal communities by dampening

wave energy and slowing the inland transfer of water during

storm induced flood events (Morris et al., 2002; Barbier et al.,

2011; Spalding et al., 2014). Intertidal wetlands occupy the

narrow zone between upland and open water regions and as a

result, are uniquely vulnerable to sea level rise. Salt marshes

dominated by smooth cordgrass (Spartina alterniflora,

recently reclassified as Sporobolus alterniflorus (Peterson

et al., 2014)) are common along southeastern US coastlines.

These systems serve as sentinels of coastal change and as a

result, resource management agencies, academic researchers

and non-profits expend considerable effort monitoring

wetlands for change detection.

Despite the known ecological value of these habitats, tidal

wetlands continue to suffer area loss and degradation (Jackson

et al., 2001; Lotze et al., 2006). Erosion from storms, sea level

rise, and coastal development threaten these vulnerable

habitats (Morris et al., 2002; Meixler et al., 2018). The

resultant losses in tidal wetlands have jeopardized coastal

communities through increased exposure to flooding and

diminished habitat for local fish stocks (Barbier et al., 2011;

Spalding et al., 2014). In response, rapid and consistent

monitoring of these wetland ecosystems has become a

priority for coastal management efforts (Psuty et al., 2018).

An example of these efforts is the National Estuarine Research

Reserve System (NERRS) program. NERRS, funded by the

National Oceanic and Atmospheric Administration (NOAA),

was designed to produce research that informs and aids

coastal managers seeking to conserve and restore coastal

resources (Trueblood et al., 2019). The NERR system

consists of 30 coastal US sites covering over 1.3 million

acres of estuarine habitat (National Estuarine Research

Reserve System, 2021). Monitoring these wetland habitats

for change detection is central to understanding resilience

to shifting environmental conditions and informing coastal

management decisions within the NERRS and beyond.

Traditional marsh monitoring practices involve on-the-

ground measures of vegetative structure (i.e. species presence

and abundance, stem density, stem height, total standing

biomass, percent cover, and often sediment surface

elevation) (Roman et al., 2001; James-Pirri et al., 2002).

While manual field surveys provide crucial information

about plant community structure, they are time and labor

intensive. As a result, manual surveys are limited in scale and

often rely on several small (1 m2) fixed monitoring plots to

characterize the entire marsh. Moreover, some areas of these

ecosystems are inaccessible by foot and trampling of wetland

vegetation in the process of manual monitoring can have

lasting negative impacts (Minchinton et al., 2019).

Monitoring approaches that minimize boots on the

ground and maximize spatial coverage of observations will

allow for greater ability to detect change at scales that are

meaningful to resource managers (MacKay et al., 2009).

Remote sensing can provide a non-invasive, scalable

alternative to manual estimates of marsh properties

(Roughgarden et al., 1991; Fennessy et al., 2007). Rapid

monitoring regimes that minimize costs while maximizing

coverage are increasingly recognized as essential for wetland

assessment programs and effective resource management

(Fennessy et al., 2007). The use of remote sensing to

understand coastal ecosystems is well-established (Green et al.,

1996). Satellite imagery has provided breakthroughs in the ability

of researchers to understand and visualize ecosystem change

(Pettorelli et al., 2018). Satellite remote sensing has improved

management capabilities in coastal regions by facilitating large-

scale mapping of critical habitats and associated ecosystem

properties over time (McCarthy et al., 2017). However,

limitations to satellite-based approaches include cloud cover

obstruction, image resolution, and limited spatial and

temporal coverage of available datasets (Pettorelli et al., 2018).

Light Detection and Ranging (LiDAR) data can improve

monitoring accuracy from satellite data by providing multi-

temporal high spatial resolution imagery (Pham et al., 2019).

Airborne and hyperspectral LiDAR have been used to map salt

marsh vegetation height and bare earth elevation but the high

cost associated with LiDAR collection is a barrier to widespread

use (Klemas, 2013; Pham et al., 2019). Unoccupied Aircraft

Systems (UAS), or drones, can provide an alternative to time

and labor-intensive manual measurements with the benefit of

fine-scale resolution that provides an edge over satellite-based

imagery (Klemas, 2013; Whitehead and Hugenholtz, 2014). UAS

have been applied to the study of salt marsh and estuarine

habitats, providing large-scale, efficient monitoring of these

habitats (Doughty and Cavanaugh, 2019; Farris et al., 2019;

DiGiacomo et al., 2020; Thomsen et al., 2021). Structure-

from-Motion (SfM) processing of overlapping UAS imagery

make possible the 3-dimensional reconstruction of salt marsh

habitats (DiGiacomo et al., 2020).

Though UAS-based methods are increasingly being utilized

for monitoring coastal wetlands (Doughty and Cavanaugh, 2019;

Farris et al., 2019; DiGiacomo et al., 2020; Thomsen et al., 2021),

imaging protocols and analysis methods lack standardization

amongst studies. Inter-sensor comparisons reveal differences in

surface reconstruction and reflectance values between common

consumer-grade UAS platforms (Sona et al., 2014; Yanagi and

Chikatsu, 2016). Moreover, other studies have found differences

in mapping products produced by different SfM software

packages for forested (Fraser and Congalton, 2018; Kameyama

and Sugiura, 2021) and unvegetated (Sona et al., 2014; Yanagi

and Chikatsu, 2016) areas. Variability introduced by UAS flight

protocols and UAS-SfM workflows for mapping dynamic coastal

wetland environments has not yet been well explored. Identifying

sources of uncertainty in mapping products is a critical first step

to building standardized protocols that can generate rigorous
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estimates of coastal habitat metrics. For this purpose, this study

evaluates the use of several UAS-SfM photogrammetry-based

approaches for the estimation of standard wetland monitoring

parameters. The specific goals of this study were to 1) conduct

spatial error analyses exploring the impact of Ground Control

Point (GCP) distribution and UAS operational parameters

(ground sampling distance, sensor resolution, and sensor

specifications) on horizontal and vertical error of UAS-based

mapping products and use the results of which to 2) compare

UAS-SfM computed vegetative characteristics to manually

collected data (above ground biomass, canopy height, percent

cover).

2 Materials and methods

2.1 Study site

A test site at Swan Island, Maryland (38.005197, -76.044356)

was used before exploring the NERR sites to establish an initial

FIGURE 1
National Estuarine Research Reserve (NERR) field sites. (A) North Carolina NERR and (B) North Inlet-Winyah Bay NERR. Orthomosaic imagery
from both sites was collected at 50 m altitude in September 2020.
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understanding of best practices to reduce spatial error. This site

was recently restored with dredged sediments and largely devoid

of vegetation.

The North Carolina (NC) NERR at Masonboro Island, NC

and North Inlet-Winyah Bay (NIWB) NERR in Georgetown, SC

were selected as the field sites for this study. Both sites are S.

alterniflora-dominated salt marsh habitats in which NERR

scientists annually document vegetative characteristics and

marsh surface elevation at fixed, long-term monitoring plots

(Figure 1). The NC NERR is a back-barrier island marsh system

dominated by S. alterniflora with a ribbon of mixed species (S.

alterniflora, Salicornia spp., Distichlis spicata) at its upland edge

that transitions to a narrow ribbon of Spartina patens-dominated

vegetation in the back-barrier dune system (Figure 1A). The

NIWB NERR study site is a bar-built, ocean-dominated estuary

characterized by expansive salt marsh habitat drained by a

network of sub-tidal and intertidal creeks. The study area

within NIWB NERR is the intertidal marsh platform in the

western-most sub-basin of the North Inlet estuary, where the

lower elevations are characterized by monoculture S. alterniflora

which transition at mid-marsh elevations to a patchy mosaic of

mixed species (Salicornia spp., Distichlis spicata, Juncus

romerianus) surrounding areas of barren hyper-saline salt

panne (Figure 1B).

2.2 Ground control

Ground control points (GCPs) were used to improve 3-

dimension positional accuracies (X, Y, Z) of all UAS based

mapping products. Expanding upon previous analyses of

optimal GCP density (Haskins et al., 2021), this study

explored the impact of GCP distribution in both horizontal

and vertical space on model accuracy. It has been previously

demonstrated that the optimal GCP density for maximizing

efficiency and model accuracy is 2 GCPs/ha (Haskins et al.,

2021).

Swan Island, the test site used for this GCP analysis, was

largely devoid of vegetation at the time of sampling. Therefore,

the bare-earth surface models produced by SfM processing were

not influenced by the presence of vegetation and SfM-produced

estimates of elevation were likely to represent the true ground

surface. Twenty-four 5-gallon bucket lids painted with markers

were randomly distributed as GCPs across the island. To assess

horizontal and vertical error, true elevations were manually

collected by surveying checkpoints (n = 115) across the

expanse of the island using a Real-time Kinematic Global

Navigation Satellite Systems (RTK-GNSS). Computed

elevations were extracted from SfM-generated models of the

site surface. These Digital Surface Models (DSMs) were

generated at Swan Island using 3, 6, 12, and 24 GCPs,

corresponding to approximately 0.25, 0.5, 1, and 2 GCPs/ha,

respectively. For each GCP density explored, a “clustered”

iteration, with GCPs clustered toward one end of the site, and

a “spaced” iteration, with GCPs relatively evenly spaced, was

performed. Computed elevations were extracted from UAS-SfM-

derived surface models and compared to manually surveyed

checkpoints. Vertical error was computed as the root mean

square error (RMSE) of differences between computed

elevation and true elevation. Horizontal error was computed

by SfM softwares as the RMSE of horizontal differences in the XY

plane given by each GCP in the process of fitting the DSMs.

Results of this investigation were used to informGCP density and

placement for surveys at the NERR sites.

GCPs used at the NERR study sites included 0.25 m2 high-

density polyurethane black and white checkerboard tiles (NIWB

NERR, n = 11), permanent structural features (NIWB NERR, n =

4), or 5-gallon bucket lids painted with point markers (NC

NERR, n = 12). Each GCP contained a clearly defined center

point which was surveyed with a survey-grade RTK-GNSS (NC:

Trimble R8 Model 4, NIWB: Trimble R8s). These known

locations were later incorporated into image processing by

partial-automation using Structure-from-Motion (SfM)

softwares. Horizontal data were referenced to the North

American Datum 1983 State Plane (NAD 1983 North

Carolina FIPS 3200, Meters) at NC NERR. At NIWB NERR,

horizontal data were referenced to the World Geodetic Datum

1984 (WGS 1984) universal Transverse Mercator (UTM) Zone

17N. Vertical data were referenced to North American Vertical

Datum of 1988 (NAVD88).

2.3 Flight information

At Swan Island, flights for GCP analysis were conducted in

August 2019 with a DJI Phantom 4 Pro equipped with a 20 MP

camera with 1 inch CMOS sensor. Images were collected from an

altitude of 37 m with a neutral density polarizing filter (ND8-PL)

to minimize glare.

At NIWB, aerial imagery was collected using a DJI Matrice

200 V2 quadcopter equipped with a Micasense Altum sensor

(Table 1). At NC, optical (Red-Green-Blue; RGB) imagery was

collected using a Hasselblad L1D-20c camera. Multispectral

imagery was collected by a Sentera Double 4K sensor that

uses Red Edge, Near-Infrared (NIR), and Red bands to

produce Normalized Difference Vegetation Index (NDVI) and

Normalized Difference Red Edge Index (NDRE) imagery. The

Sentera Double 4K NDVI + NDRE sensor was mounted on a DJI

mavic 2 Pro quadcopter with a Built-in Hasselblad camera

(Table 1). At NIWB, Radiometric calibration of the Altum

imagery was performed by imaging a Micasense-provided

reflectance panel pre-and post-flight. The Altum is also

equipped with an ambient light sensor (DLS2) that measures

intensity and angle of incident light for each of the five bands of

the sensor, allowing for at-sensor calibration of each image set

acquired during flight. Sentera Double 4K and DJI Mavic 2 Pro
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sensors lacked radiometric calibration capabilities. Optical and

Multispectral imagery was collected simultaneously, with the

exception of one multispectral flight (NC 9/14/20 at 25 m

altitude) reflown due to camera malfunction on 10/15/20.

Lithium-ion polymer batteries were used to power the aircraft.

Duplicate image datasets were collected at each of the NERRS

sites during two sampling periods: September 2020, near annual

peak marsh biomass, and February 2021, near annual minimum

biomass (referred to herein as dormant season). The area of

interest was flown three times during each sampling period at

three different altitudes (25, 50, 120 m) to determine the

influence of ground sampling distance on image-based

product accuracy. An average of 286 (NC) and 574 images

(NIWB) were collected during each sampling period, focusing

on an area of approximately 2–3 ha. The ground sampling

distance was between 0.5–6 cm resolution depending on flight

altitude and sensor resolution. All flights were conducted in

compliance with the Federal Aviation Administration 14 CFR

Part 107 regulations. Ground-based aircraft launches and

retrievals were performed at the Swan Island and NERR field

sites and specialized launching equipment was not required. UAS

details are provided in accordance with Barnas et al. (2020).

To further investigate the impact of sensor resolution and

specifications on UAS-based mapping products, an additional set

of test flights was conducted in May of 2021. In this case, both

aircraft-sensor combinations were flown in succession at NC

NERR. Both flights were conducted at an altitude of 50 m and

images from both sensors were geolocated using the same GCPs.

UAS mission planning softwares were used to ensure

consistent image overlap and monitoring of the same area

among flights. Flight paths were developed by Drone Deploy

(Swan Island), Pix4D Capture mapper application (NC) and DJI

Pilot mission flight application (NIWB). The same flight path

was used for all repeat flights to ensure that the same area was

covered across altitudes and seasons. Optical imagery data was

collected as 20-megapixel RGB images (Hasselblad, NC; 5,472 ×

3,648 pixels) or 3.2-megapixel individual band imagery

(Micasense Altum, NIWB; 2064 × 1,544 pixels) (Altum and

MicaSense, 2021; Mavic 2, 2021). Multispectral imagery was

collected by the 12-megapixel (Sentera Double 4K, NC) or

radiometrically calibrated 3.2-megapixel (Micasense Altum,

NIWB) sensor with imagery at 4,032 × 3,024 pixels and

2064 × 1,544, respectively (Altum and MicaSense, 2021;

Double 4K Sensor - Sentera, 2021). All aircraft are equipped

with onboard GPS recording geolocation data. Onboard SD cards

recorded imagery data with associated aircraft metadata and were

offloaded to computers during post-flight processing.

2.4 UAS-SfM processing

UAS imagery were stitched together using commercially-

available Structure-from-Motion (SfM) softwares Agisoft

Metashape (v.1.6.1) and Pix4Dmapper (v. 4.6.4) to generate

continuous models of each site. All image data sets were

processed using both software packages. Imagery was

geolocated using GPS onboard the UAS aircraft, which

attaches geotag information to each image, and georectified by

incorporating GCP data in the SfM software processing

workflow.

Pix4Dmapper. Using Pix4Dmapper, key points were

extracted at the full imagery resolution and image matching

was set up for an aerial grid or pre-planned flight path. The

number of key points was automatically determined and the

calibration method was set to standard. A minimum of five

images per band were identified by partial-automation to register

each GCP in UAS-SfM softwares.

Agisoft Metashape. In Agisoft Metashape, the software aligns

imported images, approximating camera position and

orientation to generate tie points in the form of a sparse point

cloud. A high accuracy was chosen for the photo alignment such

that tie points were extracted from the full-resolution images.

After alignment, GCPs were manually picked in order to

georeference all images. The software then grids the dense

cloud and filters out erroneous points based on the angle and

distance between points. The cloud was also filtered on the basis

TABLE 1 UAS platforms and sensors used at each site. Optical sensors collect RGB images (Hasselblad and Phantom built-in) or individual Red (R),
Green (G), and Blue (B) band imagery post-processed to composite RGB imagery (Altum). Multispectral sensors collect composite NDVI images
(Sentera) or individual Red Edge (RE) and Near-Infrared (NIR) imagery post-processed to composite NDVI imagery (Altum). Optical andmultispectral
sensors are provided with the associated sensor resolutions derived from company-reported platform and sensor specifications.31–33

Site Platform Optical sensor Multispectral sensor Resolution Radiometric
calibration

Swan Island DJI Phantom 4 Pro Built-in DJI camera NA 20 MP CMOS no

RGB composite

NC DJI Mavic 2 Pro Hasselblad L1D-20c Sentera Double 4K NDVI + NDRE 20 MP CMOS (Optical) no

RGB composite NDVI composite 12 MP BSI-CMOS (Multispectral)

NIWB DJI Matrice 200 V2 Micasense Altum 3.2 MP per band yes

individual band imagery (R, G, B, RE, NIR)
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of reconstruction uncertainty, projection accuracy, and

reprojection error. Camera and point optimization was

performed after each round of point filtering (Agisoft LLC, St.

Petersburg, Russia).

Optical (RGB) data was used to generate orthomosaics of

each site. RGB images were also used to generate Digital Surface

Models (DSMs), 3-dimensional models of the marsh surface

(including vegetation), and Digital Terrain Models (DTMs), 3-

dimensional bare-earth elevation models. By default, DSMs, RGB

orthomosaics, and NIR orthomosaics in Pix4D were generated at

a pixel size of 1 x the Ground Sampling Distance (GSD) of the

corresponding UAS flight. DTMs were generated by Pix4D at 5 x

GSD. RGB and NIR orthomosaics in Agisoft were generated at a

pixel size of 1 x the GSD, while DSMs and DTMs were generated

at 2 x the GSD. All models were subsequently resampled to

matching resolutions for analysis. Orthomosaics, DSMs, and

DTMs were further analyzed in ArcGIS Pro Mapping

Software version 2.7.3 (Esri Inc., Redlands, CA, United States).

2.5 Ground validation of vegetative
characteristics

Field measurements of vegetative properties were recorded at

fixed long term monitoring plots within each NERR project site

in the 1–2 weeks following UAS flights. These data provide true

metrics with which to validate UAS-SfM computed values.

Percent Cover. At NC NERR, percent cover of S. alterniflora

was assessed through a point-intercept method (Roman et al.,

2001). A thin rod was lowered perpendicular to the substrate at

50 equally spaced grid nodes within a 1 m2 quadrat. Species

intercepting the rod were recorded and their binary presence at

each node was summed across the 50 nodes and multiplied by

two for a percent cover estimate (0–100%). At NIWB NERR,

percent cover was estimated visually for each species and

recorded at 5% intervals. At both sites, estimates represent

percent cover of S. alterniflora because only monospecific

plots were included.

Canopy Height. In September, average maximum canopy

height was estimated by recording the height above the sediment

of the three tallest S. alterniflora stems observed in each sampling

plot. The S. alterniflora stems were manually measured with a

meter stick after stretching the stem to its full straight length. In

February, average maximum canopy height estimates were

derived from an average of the three maximum elevations

reached by vegetation in each sampling plot and stems were

not stretched vertically to their full straight-line length. In both

seasons, plot centers were recorded by RTK-GNSS to align

ground data with UAS-SfM products.

Biomass. Aboveground biomass was quantified by clipping

standing vegetation to the soil surface within 0.25 m2 plots

proximal to the plots used for measuring percent cover and

canopy height. In September, standing S. alterniflora biomass

was mostly live (green) with very few senescent leaves. Dead

stems without leaves, likely from previous years, were discarded

before weighing. In February, much of the existing S. alterniflora

biomass was dead (brown) or senescent (yellow). As a result,

clipped biomass was separated into three categories (green,

yellow, and brown) and each group was dried and weighed

separately. Estimates of live above-ground biomass used for

analysis were the total of green and yellow biomass (total

biomass = green biomass + yellow biomass). After harvest,

stems were washed, dried at 60 °C for 72 h, and weighed to

the nearest 0.1 g to provide total standing biomass data. Total

above-ground biomass (g) was standardized by area (g/m2) by

dividing biomass weight by the plot area (0.25 m2). Plot centers

were recorded by RTK-GNSS to identify these plots in UAS-SfM

products.

2.6 Sensor comparison

There are a wide range of commercially-available UAS

sensors and platforms with varying specifications.

Considerations of cost, flight time, and multispectral

capabilities are among the reasons that UAS platform and

sensor choice varies among research groups. In this analysis,

different UAS were used for data collection at NC NERR and

NIWB NERR. The Sentera Double 4K, used to collect

multispectral data at NC NERR, is a 12 Mega-Pixel (MP)

non-radiometrically calibrated camera. The Micasense Altum,

used at NIWB NERR, is a lower-resolution 3.2 MP sensor that is

radiometrically calibrated. To understand whether site

differences in multispectral products (NDVI rasters) were due

to differences in sensors or true variability among sites, a

comparative analysis was conducted using data collected in

May 2021 when both platform-sensor combinations were

flown at NC NERR during sequential flights. Sampling plots

(n = 1,000) were randomly generated across the vegetated survey

area in ArcGIS Pro to imitate 0.25 m2 vegetation sampling plots

collected in the manual analysis. Mean Normalized Difference

Vegetation Index (NDVI; described below) values within the

plots were extracted and compared across softwares and sensors.

2.7 Spatial error quantification

As the SfM softwares stitch individual 2-D images into a

continuous 3-D surface, SfM-computed locations may differ

slightly from true position. The quality of SfM-derived

orthorectification was assessed by evaluating the differences

between photogrammetrically-computed positions and true

measured positions. True measured positions were surveyed

by RTK-GNSS systems (see Section 2.2) with horizontal error

of approximately 1–2 cm and a vertical error of approximately

2–4 cm. Projection error in UAS-SfM derived products was
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assessed in the XY plane using visually-identified GCPs. XY error

was derived directly from UAS-SfM software reports, which

report GCP error as the difference between the true (RTK-

GNSS-derived) position of the GCP center and the computed

(SfM-derived) position as identified by the photogrammetry

software in the orthomosaic. Vertical error (in the Z plane)

was assessed using additional GNSS observations taken across

the field sites referred to as checkpoints (CPs). Vertical estimates

were computed by overlaying RTK-GNSS surveyed CPs onto

SfM-derived Digital Surface Models (DSMs) and Digital Terrain

Models (DTMs). CP elevation was extracted from elevation

models in ArcGIS Pro via the Extract Values to Points tool

and directly compared to true elevation.

2.8 Alternative terrain modeling

Vertical error from UAS-SfM models was compared to

that of available LiDAR datasets accessed via the National

Oceanic and Atmospheric Administration’s (NOAAs) data

access viewer (NOAA, 2021). LiDAR DEM data at NC NERR

is derived from the 2018 United States Army Corps of

Engineers (USACE) National Coastal Mapping Program

(NCMP) Post-Florence Topobathy Lidar DEM collected in

October 2018. This dataset was collected by the Joint

Airborne Lidar Bathymetry Technical Center of Expertise

(JALBTCX) at a cell size of 1 m and a reported vertical

accuracy of 19.6 cm (OCM Partners, 2018). LiDAR DEM

data at NIWB NERR is derived from the 2017 South

Carolina (SC) Department of Natural Resources (DNR)

Lidar DEM collected between December 2016 and March

2017. Raster DEMs have a cell size of 0.76 m and vertical

accuracy of 5.8 cm (OCM Partners, 2017). LiDAR vertical

elevation accuracy was assessed by overlaying ground-

surveyed checkpoints on LiDAR DEMs in ArcGIS and

computing the difference between LiDAR DEM elevation

and GNSS-surveyed elevation. LiDAR DEM vertical

checkpoint error was compared to that of UAS-SfM DTMs

(computed as outlined in Section 2.7).

2.9 Image-based quantification of
vegetative metrics

Products generated from SfM softwares (DSMs, DTMs,

orthomosaics, and vegetation indices) were used to compute

estimates of percent cover, canopy height, and biomass.

Above-ground Biomass. The relationship between SfM-

computed vegetation indices and field-derived biomass was

explored through a simple linear correlation analysis.

Sampling plots were digitized in ArcGIS by generating a

0.25 m2 square around each GNSS-recorded plot center

point. The ArcGIS Zonal Statistics tool was used to extract

the cell values of the corresponding vegetation index raster

within each plot. The mean index raster value within each

plot was computed and compared to field-recorded

measurements of biomass.

Vegetation Indices. Alternative indices were tested for a

relationship with biomass. The Near-Infrared (NIR) band

was used in combination with the Red band (R) to generate

NDVI rasters. NDVI has been widely used to identify and

quantify vegetation (Adam et al., 2010). Additional

vegetation indices Excess Green (ExG) and Vegetative

Index Green (VIg) were calculated using combinations of

the Green (G), Red (R), and Blue (B) bands to test for a

relationship with biomass (Meyer and Neto, 2008). To do

this, individual bands were extracted from RGB composite

imagery collected by the Mavic 2 Pro at NC and image pixel

values were normalized. Original imagery was used at NIWB,

as Micasense Altum sensors collect individual band imagery.

Indices were computed by combining individual bands using

the raster calculator in ArcGIS according to the following

equations:

NDVI � (NIR − Red)/(NIR + Red) (1)
ExG � 2pGreen − Red − Blue (2)

VIg � (Green − Red)/(Green + Red) (3)

Mean index value was computed as the average of all pixels

that fell within the area of each ground-sampled biomass plot

using Zonal Statistics in ArcGIS.

Canopy Height. Canopy height was computed as the

difference between SfM-generated DSM and DTM elevations

at monitoring plots according to the following equations:

Canopy Height =

max(DSM) −min(DTM) (4a)
max(DSM) −mean(DTM) (4b)

where the maximum value is represented by the maximum

cell value of the corresponding elevation raster (DSM or

DTM) within the area of the fixed monitoring plot.

Accordingly, the minimum value is represented by the

minimum cell value, and the mean value is represented by

the average cell value. Raster values within digitized sampling

plots were extracted using Zonal Statistics in ArcGIS. Prior to

this analysis, elevation model rasters were resampled to the

lowest resolution models within each site-season pair (DSM

and DTM) and snapped to ensure proper overlay of raster

cells. All computed canopy height metrics were compared to

ground-validated values using the Tidyverse and Dplyr

packages in R (v.1.3.1093). Canopy height analysis is

broken down by season due to the differences in ground-

based methodologies across seasons (see Section 2.5). R2 and

Root Mean Square Error (RMSE) were computed in R to

assess the potential to use UAS-SfM data to provide canopy

height estimates of S. alterniflora.
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Percent cover. Training samples consisting of ground

points (n = 30) and vegetated points (n = 30) were

manually identified using the respective site orthomosaics.

NDVI values were extracted at these points. A dynamic

NDVI threshold was employed to distinguish bare ground

from vegetation. While some studies have employed fixed

thresholds to identify vegetation (Chen et al., 2016; Laengner

et al., 2019), others have developed dynamic thresholds as

NDVI has been shown vary in different environmental

conditions (Lopes et al., 2020). In this study, after

analyzing the distribution of NDVI values across ground

and vegetated training samples, the vegetation threshold was

set as the average of the minimum recorded NDVI value for

vegetated training points and the maximum recorded value

for ground training points. The threshold was set according

to the following equation:

Threshold � [min(vegetation NDVI) +max(ground NDVI)]/2

(5)

Raster cell values within each of the plots were re-coded to a

binary value (vegetated/non-vegetated) on a per-pixel basis using

the corresponding threshold value. Percent vegetated cover was

estimated as the % of pixels within the area of each fixed

vegetation monitoring plot that were classified as vegetated

with NDVI values above the threshold. Given the observed

differences in NDVI values across sites and seasons, separate

thresholds were computed for each site-season pair.

3 Results

3.1 Spatial error analyses

3.1.1 Ground Control Point distribution
The impact of both GCP density and distribution on vertical

accuracy were analyzed using data from a test site at Swan Island,

Maryland. Increased GCP density was associated with decreasing

model error (Figure 2). Regularly distributed (“spaced”) GCPs

minimized model error as compared to unevenly spaced

(“clustered”) GCPs (Figure 2). This trend held for both SfM

softwares, though error was more pronounced at low GCP

density using Agisoft Metashape.

Pix4D-generated products demonstrate sensitivity to

GCP distributions, with substantially lower vertical RMSE

using spaced distributions as compared to that of clustered

distributions in all three density scenarios (0.25, 0.5, 1 GCPs/

ha). Metashape-generated products appear sensitive to

spacing at low GCP densities, with extreme vertical error

(1.39 m RMSE) using clustered 0.25 GCP/ha, but low error

(0.03–0.06 m RMSE) for clustered and spaced iterations at

mid-range GCP densities (0.5 and 1 GCP/ha). Using both

softwares, spaced distributions of GCPs resulted in low

vertical error (<0.06 RMSE) for GCP densities of

0.5 GCPs/ha and greater. The result of the GCP spatial

analysis was used to inform the distribution of GCPs at

the two sampling sites (NC NERR and NIWB NERR).

FIGURE 2
Vertical Root Mean Square Error (RMSE) is minimized at higher GCP densities with regularly spaced GCPs. Vertical RMSE is calculated from
differences between SfM-computed DSM elevations and GNSS-recorded true elevations at checkpoints (n = 115) across the test site at Swan Island.
Y-axes are segmented for visualization of extreme values.
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With information from the Swan Island distributional

analysis, well-spaced GCPs were distributed around NC

NERR resulting in a density of approximately 3.5 GCPs/ha.

Permanent GCP targets clustered along a boardwalk in the

center of the site were used at NIWB NERR. While spacing

could not be modified as much of the marsh area is inaccessible

at NIWB NERR, the resultant GCP density was approximately

3 GCPs/ha.

TABLE 2 Ground Control Point (GCP) reprojection error in the XY plane is similar (<5 cm) across softwares, altitudes, and sites. RMSE error is calculated as the
average of reported X and Y RMSE. Horizontal RMSE is computed in SfM softwares by comparing of GNSS-recorded GCP (n = 5–12) positions with SfM-
computed GCP positions. GNSS recorded positions are recorded with less than 1 cm of horizontal error.

Site Season Flight altitude (m) GSD (cm) Horizontal RMSE (cm)

Pix4d, Agisoft

NC September 25 0.57 0.119, 2.01

NC February 25 0.59 0.396, 3.66

NC September 50 1.17 1.395, 3.28

NC February 50 1.17 1.110, 4.06

NC September 120 2.83 1.94, 2.595

NC February 120 2.84 1.58, 2.835

NIWB September 25 1.18 0.7195, 1.300

NIWB February 25 1.08 0.996, 1.44

NIWB September 50 2.35 1.11, 0.885

NIWB February 50 2.16 2.345, 2.175

NIWB September 120 5.72 0.9325, 0.575

NIWB February 120 5.26 1.245, 0.995

FIGURE 3
Vertical error appeared to differ acrossmodels and altitudes. Vertical error was calculated as the difference between GNSS-recorded elevations
and SfM-computedmodel elevation at site checkpoints. Checkpoints recorded during both September (n = 46, NC, n = 64, NIWB) and February (n =
56, NC, n = 42, NIWB) were included in the RMSE.
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3.1.2 Horizontal error
Horizontal error, calculated as the difference between GNSS-

recorded GCP position and SfM-software computed GCP

position, is reported for each site orthomosaic. Ground

Sampling Distances (GSDs), or pixel sizes, differed across

sites, sensors, and altitude (Table 2). Altum-derived GSDs

were approximately twice as large as Mavic Pro-derived GSDs

at the same altitude. GSD differences between softwares were

negligible (<0.1 mm). Reprojection error in the XY direction was

similar (<5 cm) for Pix4D and Agisoft across altitudes, seasons,

and sites. There does not appear to be a trend in XY error across

altitudes despite the increasing GSD.

3.1.3 Vertical error
Elevation root mean square error (RMSE) at checkpoints

ranged from approximately 0.2–0.7 m. RMSE appeared to

increase with altitude, with higher RMSEs reported at higher

UAS flight altitudes. Within each altitude, DTMs were

associated with lower RMSE as compared to DSMs. RMSE

values were similar across softwares for the DSMs (mean

RMSE difference = 5 cm) while DTM RMSE values showed

greater spread (mean RMSE difference = 10 cm).

At NIWB, 50 m altitude DTMs appeared to minimize

vertical error relative to 25 and 120 m altitude models

(Figure 3). For the DSMs, 50 m altitude models showed a

slight uptick in vertical error using Pix4D models (<5 cm), but

a large jump in vertical error from 50 to 120 m altitude models

(>10 cm RMSE). Metashape model error was minimized in

both the DTMs and DSMs using 50 m altitude imagery. At

NC, 50 m altitude models demonstrated slight increases in

vertical error (<5 cm RMSE). Additionally, because less

images are contained in higher altitude datasets, processing

time decreases with altitude. From this analysis,

models constructed from 50 m imagery were chosen for all

further analyses to reduce vertical error and optimize

processing time.

FIGURE 4
LiDAR datasets demonstrate higher vertical error than SfM-derivedmodels at NC but lower error at NIWB. DTM vertical error is calculated as the
difference between model elevation and GNSS-recorded elevations and represented for each site-method pair as the Root Mean Square Error
(RMSE).
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Vertical error at checkpoints was compared across SfM-

derived DTMs and available LiDAR datasets (Figure 4).

Root mean square error (RMSE) are used to show

agreement between computed and true data and indicate

overshooting or undershooting of digitally-computed

models. At NC and NIWB, computed and true elevations

are well correlated using all three methods (R2 = 0.64–0.84)

with relatively low error (RMSE = 0.24–0.32 m). At NC,

UAS-SfM processing workflows outperform LiDAR

datasets in accuracy (UAS-SfM: RMSE = 0.24–0.40 m,

LiDAR: RMSE = 0.64) (Figure 4). At NIWB, the LiDAR

DTM yields a lower error (RMSE = 0.20 m) than either UAS-

SfM software (RMSE = 0.30–0.32 m). Comparing across

sites, DTM performance was similar within each UAS-SfM

software, but noticeable differences in accuracy were

observed using the LiDAR datasets (NC LiDAR: R2 = 0.64,

RMSE = 0.64 m, NIWB LiDAR: R2 = 0.83, RMSE = 0.20 m).

3.2 Vegetative metrics

Preliminary analyses of 3D surface models indicated that

the 50 m altitude imagery represented the optimal tradeoff

between model accuracy and processing time (details in

Section 3.1.3). All image based vegetation metrics were

calculated using models generated from 50 m altitude

imagery in Pix4D only. An initial appraisal of the models

generated in the two softwares indicated good agreement, so

only Pix4D was used to evaluate vegetation metrics to reduce

the number of variables present.

3.2.1 NDVI
The two multispectral sensors used in this analysis

(MicaSense Altum and Sentera Double 4K) demonstrated

different NDVI readings when flown concurrently over the

same test site (Figure 5). An analysis of mean NDVI at

FIGURE 5
Multispectral sensors used in this analysis demonstrate different NDVI readings of the same area. Random 0.25 m2 samples (n = 1,000) were
generated across SfM-derived NDVI rasters and the mean NDVI value was compared across sensors and softwares.
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randomly generated test plots (n = 1,000) across the marsh

platform showed that NDVI readings are highly correlated

between sensors (Pix4D: R2 = 0.85, Metashape: R2 = 0.67).

However, Altum NDVI readings were greater than Sentera

readings by a mean of 0.29 in Pix4D and 0.25 in Metashape.

Sensor resolution and specifications potentially driving these

differences are detailed in Table 1. Within sensors, reading

differences across softwares may be a result of unique software

workflows and processing algorithms as described in

Section 2.4.

3.2.2 Above-ground biomass
There was a strong positive correlation between SfM-

computed NDVI and field-derived above ground biomass

(Table 3). Imagery collected in September, when biomass was

near its annual maximum, demonstrated higher computed

TABLE 3 Vegetation indices demonstrate significant relationships with ground-derived biomass measurements. Data represented are Pix4D-
processed data using 50 m altitude flights in both February and September. ***: p < 0.001, **: p < 0.01, *: p < 0.05

Vegetation index Site Season Best fit line R2 p

NDVI NC September y = 5.08e-4 x + 0.022 0.69 ***

February y = 7.77e-4 x + 0.0086 0.65 **

NDVI NIWB September y = 4.50e-4 x + 0.32 0.73 ***

February y = 8.19e-4 x + 0.35 0.43 *

ExG NC September y = 1.46e-4x + 0.0050 0.46 *

February y = 2.73e-4 x + 0.017 0.56 **

ExG NIWB September y = 2.16e-5 x + 0.017 0.52 **

February y = 3.98e-5 x + 0.016 0.17

VIg NC September y = 9.90e-6 x + 0.015 0.01

February y = -2.22e-05 x - 0.00020 0.008

VIg NIWB September y = 1.63e-4 x + 0.069 0.38 *

February y = 2.46e-4 x - 0.0044 t0.18

FIGURE 6
Mean vegetation index values within biomass sampling plots demonstrate varying relationships with ground-derived S. alterniflora above
ground biomass (AGB). Excess Green (exG) and Normalized Difference Vegetation Index (NDVI) correlate well with AGB, but these relationships vary
by season (denoted by color), and Vegetation Index Green (VIg) shows no clear relationship with AGB.
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NDVI values. February imagery, collected when standing dead

vegetation was abundant, demonstrated lower computed NDVI

values (Figure 6). Alternative indices derived from optical data

demonstrated variable performance relative to that of NDVI.

Excess Green (ExG) demonstrated a strong linear correlation

with biomass at both sites (NC: R2 = 0.50, NIWB: R2 = 0.65)

(Table 3). VIg demonstrated a weak relationship with biomass at

both sites (NC: R2 = 0.13, NC: R2 = 0.15).

3.2.3 Canopy height
Canopy height, assessed using two different methods (Eqn.

4a, 4b), is substantially underpredicted by UAS-SfM computed

methods (Figure 7). At higher true stem heights, canopy height is

underpredicted by greater amounts as shown by the comparison

of computed data to the 1:1 line (Figure 7). At NC, there were no

significant relationships between ground and computed

measurements (p > 0.05) with R2 values ranging from 0.08 to

FIGURE 7
Computed canopy height underpredicts true canopy height. Data is visualized by season andNERRS site. Each point represents a canopy height
sampling plot from which ground data (x-axis) and UAS-SfM computed data (y-axis) were extracted. Red line represents the identity line. R2 is
assessed for individual linear relationships. Error is computed as the Root Mean Square Error (RMSE) observed vs expected data (error as it relates to
the 1:1 line) are computed to assess the goodness of fit. Subpanels represent differences between DSM and DTM values within a given digitized
sampling plot (e.g. max - min: maximum DSM value - minimum DTM value).

FIGURE 8
Percent cover estimates. (A) An NDVI threshold, denoted in red, is used to distinguish between ground and vegetation. (B) Computed percent
cover estimates are compared to ground-recorded data, demonstrating weak alignment. Example sampling plots projected onto site orthomosaics
are included. Points are colored by ground-recorded canopy height values within a sampling plot. Dashed lines represent the identity line.
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0.15. At NIWB, ground-derived and UAS-SfM computed

measurements were significantly correlated (p < 0.01) using

all methods, with R2 ranging from 0.79 to 0.85.

3.2.4 Percent cover
Pixel-based percent cover estimates demonstrate difficulty

assessing percent cover on the scale of ground-recorded

measurements in 1 m2 plots (Figure 8). Manual identification

of ground and vegetated points revealed distinct NDVI

signatures at NIWB in both September and February.

However, NDVI signatures were mixed with overlapping

ranges in both seasons at NC (Figure 8A). Thresholds

developed according to Equation 5 were employed to produce

computed percent cover estimates. Percent cover estimates

demonstrated weak alignment with ground-recorded data at

NC (Figure 8B) and no alignment with ground-recorded data

at NIWB. Percent cover estimates were high at NIWB (mean =

95.05%, sd = 12.40%) despite ground estimates encompassing a

wide range of values between 10 and 95%.

4 Discussion

The findings of this study reveal that the quality of UAS-

based mapping products can be substantially impacted by survey

design. In addressing aim 1), we demonstrate that optimal GCP

density and distributions can improve product georectification

and UAS survey altitude impacts product resolution and surface

model error. Moreover, data collection and analysis methods,

which often vary across studies, can introduce variability. SfM

software packages and platform-sensor combinations can have

variable outputs, limiting comparability and flexibility of this

approach. To address aim 2), we show that UAS hold promise for

monitoring wetlands, with particular success using indexed-

based proxies of above-ground biomass. In detailing UAS-SfM

methods and analyzing product alignment, the results of this

study lay the groundwork for a standardized methodology for

UAS-SfM based monitoring of coastal wetlands.

4.1 Spatial error analyses

4.1.1 Ground control point distribution
The observed relationship between GCP density and error

reinforces that increased GCP density leads to an improved

ability for UAS-SfM softwares to properly georectify the

orthomosaic and provide accurate ground elevation estimates

(Figure 2), which has been supported by other studies (Tonkin

and Midgley, 2016; Seymour et al., 2018; Villanueva and Blanco,

2019). While increasing GCPs density improves the product

accuracy via georeferencing, the return on effort appears

minimal at densities greater than 1 GCP/Ha (Figure 2).

Studies of unvegetated habitats also show this pattern of

diminishing returns in vertical accuracy at GCP densities

greater than 1-2 GCP/ha (Martínez-Carricondo et al., 2018;

Brunetta et al., 2021). In addition to density, this study finds

that the distribution of GCPs can substantially influence vertical

accuracy. Large vertical errors and high variance using

“clustered” spacing highlights the importance of regularly

spaced GCPs (Figure 2). This is supported by other studies

which note that GCPs should stretch to the site edges to

avoid tilt in the resultant elevation models (James et al.,

2017), and reinforce the relationship between well-spaced

GCPs and reduced model error (Tonkin and Midgley, 2016).

However, in this study, both GCP distribution and density are

analyzed together to provide a comprehensive recommendation

for study designs. Minimal vertical errors using regularly-spaced

GCPs with density 0.5 GCPs/ha or greater were observed

(Figure 2), revealing a threshold that optimizes product

accuracy while minimizing GCP density since each GCP

requires time and effort to deploy and survey. Thus, coastal

wetlands potentially do not need to be overloaded with GCPs for

SfM processing if GCPs are well spaced. However, this

distributional analysis also indicates that increasing the

density of GCPs can reduce error to offset the impact of

clustered GCPs. At many protected coastal sites it may be

infeasible to regularly distribute GCPs across the study area

due to inaccessibility or habitat protections. In these cases, it

would be recommended to increase the number of GCPs to

2 GCP/ha or greater. NIWB NERR represented one such site,

where permanent GCPs were fairly clustered along a boardwalk.

High GCP densities (~3 GCPs/ha) were used to offset errors

introduced by spacing and maximize model accuracy.

4.1.2 Horizontal error
The horizontal reprojection error analysis demonstrates the

tradeoff between flight altitude, with higher altitudes allowing for

greater area coverage, and product resolution. Within a given

UAS sensor, pixel size (GSD) increases proportionally with

altitude. Across sensors, GSD differences were the result of

differences in sensor resolutions (see Table 1), as GSD

depends on inherent camera properties. The Mavic (NC)

demonstrated higher resolution products indicated by a lower

GSD as compared to the Altum (NIWB) likely due to sensor

resolution differences (Table 1). The resultant GSD of Mavic

flights at 50 m altitude approximately matches that of Altum

flights at 25 m, indicating that users can decrease UAS flight

altitude to offset reduced sensor resolutions and still achieve an

optimal GSD for mapping purposes.

Horizontal error remained fairly constant across altitudes,

even whilst product resolution (GSD) increased substantially

(Table 2). For mapping projects, high UAS flight altitudes

(>100 m) may be optimal as it allows the user to rapidly

cover large areas without sacrificing much horizontal

accuracy. However, the increase in GSD with altitude should

be noted for projects intending to precisely map fine-scale
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features or boundaries. Horizontal error was generally similar

(<4 cm difference) across SfM software packages, but Pix4D-

generated products tended to produce smaller errors (Table 2),

potentially indicating a heightened ability to georectify

orthomosaics to meet ground-surveyed points. Overall, low

horizontal errors (<5 cm) demonstrated by this analysis

provide promising information for precise mapping of coastal

and estuarine habitats, improving abilities to perform spatial

analyses like the delineation of ecological boundaries and

assessment of marsh retreat and advancement.

4.1.3 Vertical error
The analysis of GCP distribution at Swan Island (Section

3.1) demonstrated that with well-spaced GCPs at a density of

1 per hectare, vertical accuracies on the order of 5 cm or less

are achieved on unvegetated surfaces. When vegetation is

present, SfM-derived surface models represent the top of

the vegetative canopy rather than the ground surface. As a

result, comparisons between modeled (SfM) and measured

(GNSS) elevations are influenced by the presence of

vegetation. With SfM, as with LiDAR, the ability to

accurately sense marsh sediment elevation is dependent

upon the density of vegetative cover as this determines the

number of ground hits (ie. pixels that represent sediment

surface) that are sampled.

DSMs are constructed to represent the marsh canopy (i.e.

plant tips) while DTMs (created by filtering the 3D point cloud to

remove all points above the ground surface) represent bare-earth

models intended to exclude vegetation and other structures.

Because these sites are vegetated ecosystems, it is expected

that GNSS-recorded, “true” values represent bare-earth

elevation and therefore should closely align with DTM-

derived elevations. Anders et al. (2019) assessed Agisoft

Metashape-generated (formerly Agisoft Photoscan) DTMs

over shrubland habitat which yielded an RMSE of 0.5m,

similar to the values observed in this study (Figure 3) (Anders

et al., 2019). However, the range of RMSE values for both surface

and terrain models demonstrate the challenges with accurately

measuring vegetation height from imagery. With S. alterniflora

stems ranging from approximately 0–2 m tall, high error in

elevation models means that, proportionally, much of the

plant stem may be missed in calculations.

Comparing error across softwares, the notable differences

in DTM error is potentially a result of dissimilarity in DTM

construction methods across softwares. Metashape allows for

more user input in the DTM construction, permitting the user

to define the maximum angle and distance between points to

filter the DSM in the creation of a DTM (Agisoft Metashape

User Manual - Professional Edition, Version 1.5). In contrast,

Pix4D does not allow these parameters to be defined (Pix4D,

2022). Because of these differences, the DTMs do not appear

to be comparable across softwares. The DSMs contain higher

RMSE than DTMs but are more consistent when comparing

across softwares (Figure 3) presumably due to software

similarities in DSM construction methods.

Analyzing altitudinal trends, the increase in vertical error

observed at higher altitudes speaks to the tradeoff between

efficiency (higher altitude flights cover a larger area in fewer

images) and precision (Figure 3, Supplementary Figure S1). For

this study, 50 mwas chosen as the optimal flight altitude based on

Figure 3, as it minimizes DSM RMSE at NIWB, only shows a

slight increase in error from 25 m altitude at NC, and is the most

consistent across softwares. While there is a clear tradeoff in

product resolution with flight altitude (see Table 2), vertical

accuracy does not demonstrate a clear trend with altitude. A

similar study using a consumer-grade UAS to survey a shrubland

area revealed an increase in vertical error with altitude (altitude

range: 126–235 m) at the first site and consistent vertical error

across altitudes at the second site (Anders et al., 2020). The range

of low altitudes (25–120 m) used in this study are those most

commonly used by United States UAS pilots given that flight

altitudes above 120 m are restricted by the Federal Aviation

Administration (FAA). In analyzing product accuracy over

this relevant altitudinal range, this study may inform flight

planning for efficient mapping of coastal vegetated areas.

UAS-SfM-derived DTM errors are similar to that of other

studies of similar habitats (Yanagi and Chikatsu, 2016;

Goodbody et al., 2018). For example, Goodbody et al. (2018),

using a fixed-wing UAS to construct DTMs of vegetated habitats,

reported an average of 0–0.5 m error in shrubland habitats. UAS-

SfM DTM error in similar short vegetation in this study is

comparable (RMSE: 0.24–0.32 m; Figure 4). Comparing the

two UAS-SfM methods to LiDAR data, it is clear that LiDAR

datasets, though substantially lower in resolution and lacking

real-time observations, yield comparable elevation estimates to

UAS-SfM-constructed bare-earth models. This observation,

which is supported by other studies, may be due to the high-

accuracy positioning of aircraft hosting LiDAR sensors (Dayamit

et al., 2015; DiGiacomo et al., 2020). Comparing all three

methods, Metashape-generated DTMs align best with GNSS-

recorded values with high R2 values and low RMSE estimates

(Figure 4). This may be explained by noting that Metashape

DTM-generation, discussed in Section 2.4, allows for a high level

of user input.

4.2 Vegetation metrics

4.2.1 NDVI
The observed differences in NDVI readings across sensors

indicate that raw NDVI values cannot be compared across the

two sites (Figure 5). With an observed difference in NDVI

readings between sensors of approximately 0.3 across the

biomass values observed in this study, it is clear that absolute

NDVI values cannot be compared across sensors, even when

flying the same site under the same conditions. For comparative
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work (i.e. observing changes in marsh biomass over time), it is

therefore recommended that the same sensor is used. However,

this may become difficult as sensors improve and change over

time. For this reason, test flights of the same area under the same

conditions may be flown to develop a transformation between

sensors and enable direct comparisons of NDVI values. Sensor-

specific differences in NDVI values have been outlined across

different satellite-derived datasets and between UAS and satellite

data and attributed to differences in bandwidths, spatial

resolutions, and data processing (Huang et al., 2021). One

important distinction is that multispectral data from the

Micansense Altum (NIWB) sensor is radiometrically calibrated

using a calibration panel while that of the Sentera Double 4K (NC)

is non-calibrated. Radiometric calibration, which converts the

sensor radiance into reflectance values and accounts for

changes in ambient light, works to provide standardized data

that is more comparable across conditions (Lu, 2006). While

this adds greater consistency and reliability to the Altum

dataset, it has been noted that the factory-provided calibration

of commercial-grade UAS with multispectral capabilities can be

limited and fail to account for sensor changes and deterioration

over time (Mamaghani and Salvaggio, 2019). Alternative

calibration methods have been developed to improve accuracy

across flights, but these methods may require additional time and

specialized knowledge (Mamaghani and Salvaggio, 2019).

4.2.2 above-ground biomass
NDVI is recommended as the most reliable option as it has the

strongest relationship with biomass (R2 = 0.42–0.73, Table 3) and is

significantly linearly correlated with biomass across sites and

seasons. Moreover, these linear relationships (slopes, intercepts)

are consistent across seasons at each site (Table 3). This indicates

the potential to use a linear model to accurately predict biomass

changes over time at a given site from UAS imagery. Previous

studies of S. alterniflora biomass using SPOT6 satellite remote

sensing images and airborne hyperspectral scanners report a similar

relationship with NDVI (R2 = 0.499, R2 = 0.635, respectively)

(Wang et al., 2017; Zhou et al., 2018). Several UAS-based

studies have shown clear linear relationships between biomass

and NDVI readings in coastal wetlands (Zhou et al., 2018;

Doughty and Cavanaugh, 2019). This study supports the ability

of UAS-based multispectral imagery to provide non-invasive

estimates of wetland biomass across multiple sites and seasons.

Indices that rely on optical data alone, like ExG and VIg,

provide a clear advantage in that these data are more accessible

and generally less expensive. ExG also demonstrates a strong

relationship with biomass (R2 = 0.17–0.56, Table 3), although the

strength of this relationship is variable across seasons (Figure 6).

In the absence of multispectral data, ExG may provide reliable

estimates during peak biomass that don’t require advanced

multispectral sensors or calibrations. While VIg largely fails to

capture changes in biomass in this study, it is possible that VIg

may perform well in other systems. This is supported by other

work showing that VIg is tightly correlated to biomass in studies

using commercial-grade UAS to survey maize fields (R2 = 0.68)

(Niu et al., 2019) and hyperspectral UAS to study changes in

summer barley biomass (R2 = 0.62) (Bendig et al., 2015). While

these represent several common vegetation indices, future work

may explore the potential of more complex indices, or

combinations of indices, which have been shown in certain

studies to improve predictions of AGB (Huete, 1988; Qi et al.,

1994; Fuentes-Peailillo et al., 2018; Poley and McDermid, 2020).

Relationships with biomass should be further analyzed with an

understanding that many current vegetation characteristics are

designed for allometric-based estimates of above-ground biomass.

Traditional approaches involve clipping plants, like the ground-

based data in this study, to assess biomass. Even non-invasive

approaches, like measuring density and stem height as a proxy for

biomass, require substantial effort and result in sparse data points

across a dynamic habitat. Furthermore, in many coastal marshes

the sediments of the lower elevations are so unconsolidated as to

make access for ground-based measurements impractical or

simply too physically destructive to warrant repeat sampling.

The ability to estimate AGB using image-based indices across

landscapes transforms the scale at which we can monitor these

ecosystems. Moreover, the consistency across seasonal endpoints

(dormant season and peak-biomass) demonstrated by linear

models (Table 3) indicates potential to accurately monitor

biomass within a given site. In this way, UAS may be used to

rapidly and efficiently collect vegetation data over time, allowing

researchers and managers to estimate biomass across meaningful

spatiotemporal scales.

4.2.3 Canopy height
All canopy height estimation methods employed here

indicate that canopy height is substantially underestimated by

UAS-derived heights and that UAS-SfM methods underestimate

plant height more at higher stem heights (Figure 7). This trend,

observed in previous studies of S. alterniflora structure, has been

addressed in other studies by inflating UAS-SfM computed plant

heights to improve the accuracy of canopy height estimates

(DiGiacomo et al., 2020). Because the purpose of this study is

to understand the feasibility of the SfM software user to produce

canopy height estimates from UAS-SfM products, a

transformation was not employed and only raw values were

analyzed. The finding that canopy height underprediction

increases with stem height is likely due to the fact that taller

S. alterniflora plants tend to bend more under their own weight

and the outer leaves of tall plants often drape outward from the

main stem, whereas shorter plants tend be more compact and

erect. The results of the current investigation indicate that canopy

height estimate accuracy is variable across sites and seasons. Site-

based differences may be explained by the fact that the two sites

represent different ranges of canopy heights, with NIWB

generally representing taller plants (mean ± sd: 1.26 ± 0.45 m)

and NC representing shorter plants (0.81 ± 0.49 m). While short
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plants (0–0.5 m) appear to fall close to the 1:1 line with low error

(RMSE: 0.22–0.23 m), deviation from the 1:1 line becomes more

pronounced with canopy height (Figure 7). Tall plants

(height >0.5 m) observed at both sites and seasons have large

errors (RMSE: 0.95–1.09 m). Seasonal differences in canopy

height estimation accuracy may be explained by this height-

driven error, as plant height tends to be reduced in the dormant

season. Methodological differences for height measurements

across seasons (see Section 2.5), however, may also impact

this relationship as stem straight-line length was measured in

the peak-biomass data, while sloped stem height was measured in

the dormant season. While we might therefore expect to observe

more underestimation in plant height by UAS in the September

data, which is observed at NC (Figure 7), it is difficult to tease

apart whether methodological differences or true seasonal

differences in plant height (i.e. senescence) drive these

observed differences. We believe that this highlights the need

to re-evaluate and standardize field practices for canopy height

measurements. While it is typical to use straight-line stem height

as “true” canopy height in manual vegetation height field studies,

remotely sensed measurements record natural, or sloped, canopy

height (Currin et al., 2008; DiGiacomo et al., 2020). However, in

the dormant season, when the same ground-based methods were

employed across sites, a better fit was still observed at NC

(Figure 7). This may be explained by lower vertical error in

NC DSM and DTM products (Figure 3) or the previously

mentioned difference in ranges of canopy heights across sites.

Future studies might better resolve this trend by targeting field

sites with a wider range of stem heights to reduce the number of

variables potentially impacting metrics of canopy height error.

Additionally, as canopy height may vary within a 1 m2 area, we

suggest that future work decrease the plot size within which

ground-based measurements of stem height are recorded.

4.2.4 Percent cover
The NDVI signatures of ground and vegetation at NC show

considerable overlap, indicating a difficulty to separate ground

from vegetation using a fixed NDVI threshold at NC (Figure 8A).

In contrast, the distinct NDVI signatures observed at NIWB

(Figure 8A) may provide evidence for the possibility of NDVI-

based thresholding to separate ground and vegetation pixels for

percent cover estimates. However, as can be seen in Figure 8B,

this thresholding approach does not produce percent cover

values aligned with ground-recorded estimates. The failure of

a pixel-based percent cover approach to align with field-recorded

values may be a result of an oversaturation of NDVI. Spectral

indices such as NDVI can present a saturation problem, where

indices plateau at a threshold where the index is fully saturated,

typically an issue in areas characterized by densely vegetated

canopies (Asner et al., 2003; Lu, 2006; Zhao et al., 2016). As a

result, changes in cover beyond these thresholds cannot be

isolated. With taller plants at NIWB, and therefore greater leaf

area, computed percent cover estimates appear to become

saturated with all image-based estimates nearing 100% cover

(Figure 8B). These tall plants (>1.0 m) are associated with high

percent cover estimates (mean ± sd: 84.38 ± 24.26%), while short

plants (defined as < 0.5 m), that characterize NC are associated

with lower computed percent cover estimates (mean = 20.17%,

sd = 35.78%). Therefore, beyond canopy density, as outlined in

previous studies (Lu, 2006; Zhou et al., 2018), plant height may

influence aerial multispectral estimates of percent cover given

that there is greater leaf area. It is also possible that, given the

resolution of the sensors, percent cover may not be feasible to

extract on this scale. Classification of wetland imagery and the

development of percent cover estimates has been executed using

UAS-based approaches at larger scales, such as Chabot and Bird

(2013), who used 25 m radius circular plots to successfully assess

percent cover (Chabot and Bird, 2013).

Though, in this study, ground-based estimates of percent cover

are considered to be “true” data, it should be noted that these

manual estimates vary in methodology and may be inconsistent.

Differences in percent cover ground data collectionmethods at NC

and NIWB may be a source of variability in the data. The point-

intercept method used at NC may be more objective, as it has

rigorous quantitative metrics for computing cover (see Section

2.5), which may help to explain the increased alignment of UAS

and ground data at NC (Figure 8A). Ground-based methods for

assessing percent cover may be limited by the horizontal frame of

reference and impacted by canopy height, density, and vegetation

type. For these reasons, aerial estimates may be less subjective than

ground-based estimates and provide more consistent, reliable

estimations of vegetation cover.

5 Conclusion

Inexpensive, widely available UAS platforms provide a

valuable tool for habitat monitoring and change detection in

coastal ecosystems. We demonstrate that mapping product

accuracy is impacted by GCP density and distribution as well

as common UAS operational parameters. With adequate

attention to flight planning and SfM processing routines, UAS

can be used to estimate plant biomass and create marsh surface

models that are comparable in accuracy to manually-derived

products. The consistently low error in XY position associated

with UAS-SfMmodels suggests that these products will also be of

great value for measuring elevation change and structural metrics

over time in the face of rapid change in coastal and estuarine

habitats. In describing the variability and tradeoffs associated

with UAS-based mapping operations and parameters, this study

helps to increase transparency and comparability of UAS-SfM

based monitoring and assessment of coastal wetlands. The results

of this work will expand our ability to accurately and rapidly

assess and monitor coastal wetlands on unprecedented scales, a

critical step forward in light of recent coastal change and

restoration efforts.
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